Page 13 - LAPLACE TRANSFORM
P. 13

1.2  Laplace Transform of a function by using Integration by parts




                            Integration by Parts is a special method of integration that is often useful when

                            two functions are multiplied together,



                                  Integration by parts formula:

                                             ∫u v dx = u ∫v dx − ∫u' (∫v dx) dx


                                             •  u is the function u(x)
                                             •  v is the function v(x)

                                             •  u' is the derivative of the function u(x)






                       Example 2




                       Compute the following function f(t) using Laplace transform.

                          1.  f (t) = 2 t

                                      2
                          2.  f (t) = 5 t






                       SOLUTION

                                                 ∞
                       1. F(S) = ʆ {ƒ(t)}         = ∫   (  ).    −      dt
                                                   
                                                ∞
                                             = ∫ 2   .    −      dt
                                                0




















                                                                                                         7
   8   9   10   11   12   13   14   15   16   17   18