Page 8 - LAPLACE TRANSFORM
P. 8

Basic Integration Rules





                                                                                      3
                        ∫ (1) dt = t + C                                             t2    2
                                                                                1/2
                                                                                              3/2
                                                                    ∫ √t dt = ∫ t =   3  =   t  + C
                                                                                     2     3
                        ∫ (10) dt = 10t + C
                                                                              1
                                                                                 at
                                                                      at
                                                                    ∫ e  dt =   e  + C
                                2
                                 
                        ∫t dt =   + C                                           
                                2
                                                                               1
                                                                                   -at
                                                                      -at
                                 3
                                  
                         2
                        ∫t  dt =   + C                              ∫ e  dt =   e  + C
                                                                              −  
                                3
                                                                              1
                                                                                 2t
                                                                      2t
                                    
                        ∫    dt =      + C                          ∫ e  dt =   e  + C
                            
                                                                              2
                        ∫cos(t) dt = sin(t) + C                       -2t      1   -2t
                                                                    ∫ e  dt =   e  + C
                                                                              −2
                                      1
                        ∫cos(2t) dt =   sin(2t) + C
                                      2
                                                                               2
                                                                               t
                                                                    ∫ 8tdt = 8   = 4 t + C
                                                                                       2
                        ∫sin(t) dt = − cos(t) + C                              2
                                                                                 3
                                         1
                                                                                t
                                                                                         3
                                                                       2
                        ∫sin(2t) dt = −   cos(2t) + C               ∫ 6t  dt = 6    = 2 t + C
                                         2                                       3
                       1
                       ∫  dt = In t + C                                4         t 5    5
                                                                    ∫ 5t  dx = 5    =  t + C
                                                                                 5


                       Exponent Rules

                                             0
                       Zero rule            e  = 1


                                             ∞
                       Limits at infinity   e  = 0











                                                                                                         2
   3   4   5   6   7   8   9   10   11   12   13