Page 25 - NETWORK ANALYSIS
P. 25
19
Mesh Analysis
Converting mesh equations into matrix form;
(2 + j4) (−j4) 0 1 20 < 0º
[ (−j4) (8 – j2) 8 ] [ 2] = [ 0 ]
0 8 18 3 10 < 0º
Solve the equation in each mesh to obtain the values of i1, i2 and i3.
To find ∆:
(2 + j4) (−j4) 0
[ (−j4) (8 – j2) 8 ]
0 8 18
∆ = (2 + j4) [(8 – j2) (18) – (8)(8)] – (– j4) [(–j4) (18)]
= (2 + j4) [80 – j36] – (– j4) [– j72]
= (304 + j248) – (–288)
= 592 + j248
To find ∆ i1
20 (−j4) 0
[ 0 (8 – j2) 8 ]
10 8 18
∆ i1 = 20[(8–j2) (18) – (8)(8)] – (–j4) [0 – (8) (10)]
= 20[80– j36] – (–j4) [– 80]
= 1600 – j1040
∆ i1 ( – )
i1 = = = (1.673 – j2.458) A
∆ ( + )