Page 25 - NETWORK ANALYSIS
P. 25

19
                                                                                                                                           Mesh Analysis

                       Converting mesh equations into matrix form;

                        (2  +  j4)   (−j4)     0     1      20 < 0º
                       [  (−j4)    (8 –  j2)   8 ] [  2] =  [  0    ]
                           0           8      18     3      10 < 0º




                       Solve the equation in each mesh to obtain the values of i1, i2 and i3.

                       To find ∆:


                        (2  +  j4)   (−j4)     0
                       [  (−j4)    (8 –  j2)   8 ]
                           0           8      18

                       ∆ = (2 + j4) [(8 – j2) (18) – (8)(8)] – (– j4) [(–j4) (18)]


                          = (2 + j4) [80 – j36] – (– j4) [– j72]

                          = (304 + j248) – (–288)


                          = 592 + j248




                       To find ∆ i1

                        20    (−j4)     0
                       [  0  (8 –  j2)   8 ]
                        10      8      18

                       ∆ i1   =    20[(8–j2) (18) – (8)(8)] – (–j4) [0 – (8) (10)]


                              =    20[80– j36] – (–j4) [– 80]

                              =    1600 – j1040




                          ∆ i1   (         –           )
                       i1 =     =                 = (1.673 – j2.458) A
                           ∆      (       +         )
   20   21   22   23   24   25   26   27   28   29   30