Page 21 - NETWORK ANALYSIS
P. 21

15
                                                                                                                                           Mesh Analysis

                       Converting mesh equations into matrix form;


                        (20  +  j20)   (15  +  j20)  i1        22
                       [                            ] [ ] = [     ]
                        (15  +  j20)   (25  +  j10) i2         10



                       To find ∆:

                        (20  +  j20)   (15  +  j20)
                       [                            ]
                        (15  +  j20)   (25  +  j10)


                       ∆ = (20 + j20) (25 + j10) – (15 + j20) (15 + j20) = 475 + j100




                       To find ∆ i1

                        22    (15  +  j20)
                       [                  ]
                        10    (25  +  j10)

                       ∆ i1     = (22) (25 + j10) – (15 + j20) (10) = 400 + j20


                          ∆ i1    (400 + j20)
                       i1 =     =            = (0.815 – j0.129) A
                           ∆     (475 + j100)



                       To find ∆ i2

                        (20  +  j20)  22
                       [                 ]
                        (15  +  j20)   10


                       ∆ i2    = (20 + j20) (10) – (22) (15 + j20) = – 130 – j240

                          ∆ i2   (– 130 – j240)
                       i2 =     =              = (– 0.364 – j0.429) A
                           ∆      (475 + j100)



                       i5Ω = i1 = (0.815 – j0.129) A

                       i10Ω = i2 = (– 0.364 – j0.429) A


                       We know that, i1 and i2 in the same direction;

                       i15Ω = i1 + i2 = (0.815 – j0.129) + (– 0.364 – j0.429) = (0.451 – j0.558) A
   16   17   18   19   20   21   22   23   24   25   26