Page 71 - LAPLACE TRANSFORM
P. 71

Example 2

                       By using Laplace transform method, elaborate y(t) for the given differential equation.

                                         3t
                       y’’− 3y’ + 2y = 4e                  ; given y (0) =0 and y’ (0) = 5


                       Solution



                                         3t
                       y’’− 3y’ + 2y = 4e
                         2
                       {s Y(s) – s y (0) – y’ (0)} – 3 {s Y(s) – y (0)} + 2Y(s) =   4
                                                                             (S−3)
                         2
                       {s Y(s) – s (0) – (5)} – 3 {s Y(s) – (0)} + 2Y(s) =   4
                                                                       (S−3)
                         2
                       {s Y(s) – (5)} – 3 {s Y(s)} + 2Y(s) =   4
                                                           (S−3)
                        2
                       s Y(s) – 5 – 3sY(s) + 2Y(s) =   4
                                                    (S−3)
                        2
                       s Y(s) – 3sY(s) + 2Y(s) =   4    + 5
                                                (S−3)
                             2
                       Y(s) (s  – 3s + 2) =   4    + 5.  (S−3)
                                          (S−3)     (S−3)
                             2
                       Y(s) (s  – 3s + 2) =   4    +  5S − 15
                                          (S−3)    (S−3)
                       Y(s) {(s – 1) (s – 2)} =   4 + 5S − 15
                                                (S−3)
                                               4 + 5S − 15       A      B       C
                                     Y(s) =                  =       +      +
                                            (s – 1)(s – 2)(S−3)    (s−1)     (s−2)    (s−3)
                                         +        −        = A (   −   ) (   −   ) + B (   −   ) (   −   ) + C (   −   ) (   −   )



                       when (s − 1) = 0

                       s= 1;                       4  +  5S  −  15  = A (   − 2) (   − 3) + B (   − 1) (   − 3) + C (   − 1) (   − 2)
                                              4 +  5S  −  15  = A (   − 2) (   − 3)


                                                 4  +  5(1) −  15  = A (1 − 2) (1 − 3)
                                                      −6  = 2A

                                                        −  
                                                    A =   = −  
                                                          






                                                                                                       59
   66   67   68   69   70   71   72   73   74   75   76