Page 69 - LAPLACE TRANSFORM
P. 69

when s = 4       2s = A(s − 4) + B(s − 3)


                                            2(4) = B(4 − 3)

                                      B =   




                                 A        B
                       X(S)  =       +
                               (s−3)    (s − 4)
                                −         8
                       X(S)  =       +
                               (s−3)    (s − 4)
                                        4t
                                 3t
                       x(t) = −6e  + 8e





                       4.2 Second order differential equation


                               2
                       f’’(t) = s F(s) – sf(0) – f’(0)            ; f’(t) =  df(t)   when t=0
                                                                           dt


                            2
                                        2
                        2
                       d x/dt  = x’’(t) = s X(s) – sx(0) – x’(0)   ; x’(t) =  dx(t)   when t=0
                                                                           dt
                        2
                                        2
                            2
                       d y/dt  = y’’(t) = s Y(s) – sy(0) – y’(0)   ; y’(t) =  dy(t)   when t=0
                                                                           dt



                       Example 1

                       Find the differential equation x(t) for the following equation using Laplace transform.

                       x’’ – 4x’ + 3x = 0          ; given x (0) =5 and x’ (0) =7


                       Solution




                       x’’ – 4x’ + 3x = 0

                         2
                       {s X(s) – s x (0) – x’ (0)} – 4 {s X(s) – x (0)} + 3X(s) = 0
                       {s X(s) – s (5) – (7)} – 4 {s X(s) – (5)} + 3X(s) = 0
                         2



                                                                                                       57
   64   65   66   67   68   69   70   71   72   73   74